登入
|
註冊
|
會員中心
|
結帳
|
培訓課程
魔法弟子
|
自資出版
|
電子書
|
客服中心
|
智慧型立体會員
書名
出版社
作者
isbn
編號
5050魔法眾籌
|
NG書城
|
國際級品牌課程
|
優惠通知
|
霹靂英雄音樂精選
|
iPhone 4S JB解禁秘術:Cydia 超限軟體300+
.
ChatGPT完整解
.
Scikit-lea
.
深度學習 最佳入門邁
文學小說
文學
|
小說
商管創投
財經投資
|
行銷企管
人文藝坊
宗教、哲學
社會、人文、史地
藝術、美學
|
電影戲劇
勵志養生
醫療、保健
料理、生活百科
教育、心理、勵志
進修學習
電腦與網路
|
語言工具
雜誌、期刊
|
軍政、法律
參考、考試、教科用書
科學工程
科學、自然
|
工業、工程
家庭親子
家庭、親子、人際
青少年、童書
玩樂天地
旅遊、地圖
|
休閒娛樂
漫畫、插圖
|
限制級
開發者傳授PyTorch秘笈
作者:
陳昭明
分類:
電腦與網路
/
綜論
出版社:
深智數位
出版日期:2022/6/20
ISBN:9786267146156
書籍編號:kk0551267
頁數:872
定價:
1200
元
優惠價:
79
折
948
元
書價若有異動,以出版社實際定價為準
訂購後立即為您進貨
訂購後立即為您進貨:目前無庫存量,讀者下訂後,開始進入調書程序,一般天數約為2-10工作日(不含例假日)。
團購數最低為 20 本以上
評價數:
(請將滑鼠移至星星處進行評價)
目前平均評價:
文字連結
複製語法
開發者傳授PyTorch秘笈
圖片連結
複製語法
分
享
內容簡介
作者介紹
書籍目錄
同類推薦
∼ 2022 開發者唯一指定 PyTorch 祕笈!∼ 深度學習【必備數學與統計原理】✕【圖表說明】✕【PyTorch 實際應用】 ★ 作者品質保證 ★ 經過眾多專家與學者試閱昭明老師著作皆給【5 顆星】滿分評價! ∼ 從基礎理解到 PyTorch 獨立開發,一氣呵成 ∼ 本書專為 AI 開發者奠定扎實基礎,從數學統計 ► 自動微分 ► 梯度下降 ► 神經層,由淺入深介紹深度學習的原理,並透過大量 PyTorch 框架應用實作各種演算法: ● CNN (卷積神經網路) ● YOLO (物件偵測) ● GAN (生成對抗網路) ● DeepFake (深度偽造) ● OCR (光學文字辨識) ● ANPR (車牌辨識) ● ASR (自動語音辨識) ● BERT / Transformer ● 臉部辨識 ● Knowledge Graph (知識圖譜) ● NLP (自然語言處理) ● ChatBot ● RL (強化學習) ● XAI (可解釋的 AI) 本書特色 入門深度學習、實作各種演算法最佳教材! ★以【統計╱數學】為出發點,介紹深度學習必備的數理基礎 ★以【程式設計取代定理證明】,讓離開校園已久的在職者不會看到一堆數學符號就心生恐懼,縮短學習歷程,增進學習樂趣 ★摒棄長篇大論,輔以【大量圖表說明】介紹各種演算法 ★【完整的範例程式】及【各種演算法的延伸應用】!直接可在實際場域應用。 ★介紹日益普及的【演算法與相關套件】的使用 ★介紹 PyTorch 最新版本功能 ★與另一本姊妹作《深度學習–最佳入門邁向 AI 專題實戰》搭配,可同時學會 PyTorch 與 TensorFlow
陳昭明 ●曾任職於 IBM、工研院等全球知名企業 ●IT 邦幫忙 2018 年 AI 組【冠軍】 ●多年 AI 課程講授經驗
第一篇╱深度學習導論 第 1 章 深度學習 (Deep Learning) 導論 1-1人工智慧的三波浪潮 1-2 AI的學習地圖 1-3 TensorFlow vs. PyTorch 1-4機器學習開發流程 1-5開發環境安裝 1-6 免費雲端環境開通 第 2 章 神經網路 (Neural Network) 原理 2-1必備的數學與統計知識 2-2萬般皆自『迴歸』起 2-3神經網路 第二篇╱PyTorch 基礎篇 第 3 章 PyTorch 學習路徑與主要功能 3-1 PyTorch學習路徑 3-2張量運算 3-3自動微分(Automatic Differentiation) 3-4 神經層(Neural Network Layer) 3-5 總結 第 4 章 神經網路實作 4-1撰寫第一支神經網路程式 4-2 模型種類 4-3 神經層(Layer) 4-4 激勵函數(Activation Functions) 4-5 損失函數(Loss Functions) 4-6 優化器(Optimizer) 4-7 效能衡量指標(Performance Metrics) 4-8 超參數調校(Hyperparameter Tuning) 第 5 章 PyTorch 進階功能 5-1 資料集(Dataset)及資料載入器(DataLoader) 5-2 TensorBoard 5-3 模型佈署(Deploy)與TorchServe 第 6 章 卷積神經網路 (Convolutional Neural Network) 6-1卷積神經網路簡介 6-2卷積(Convolution) 6-3各式卷積 6-4池化層(Pooling Layer) 6-5 CNN模型實作 6-6 影像資料增補(Data Augmentation) 6-7 可解釋的AI(eXplainable AI, XAI) 第 7 章 預先訓練的模型 (Pre-trained Model) 7-1 預先訓練模型的簡介 7-2 採用完整的模型 7-3 採用部分模型 7-4 轉移學習(Transfer Learning) 7-5 Batch Normalization說明 第三篇╱進階的影像應用 第 8 章 物件偵測 (Object Detection) 8-1 圖像辨識模型的發展 8-2 滑動視窗(Sliding Window) 8-3 方向梯度直方圖(HOG) 8-4 R-CNN物件偵測 8-5 R-CNN改良 8-6 YOLO演算法簡介 8-7 YOLO測試 8-8 YOLO環境建置 8-9 YOLO模型訓練 8-10 YOLOv5模型訓練 8-11 SSD演算法 8-12 物件偵測的效能衡量指標 8-13 總結 第 9 章 進階的影像應用 9-1 語義分割(Semantic Segmentation)介紹 9-2 自動編碼器(AutoEncoder) 9-3 語義分割(Semantic segmentation)實作 9-4 實例分割(Instance Segmentation) 9-5 風格轉換(Style Transfer) --人人都可以是畢卡索 9-6 臉部辨識(Facial Recognition) 9-7 光學文字辨識(OCR) 9-8 車牌辨識(ANPR) 9-9 卷積神經網路的缺點 第 10 章 生成對抗網路 (GAN) 10-1 生成對抗網路介紹 10-2 生成對抗網路種類 10-3 DCGAN 10-4 Progressive GAN 10-5 Conditional GAN 10-6 Pix2Pix 10-7 CycleGAN 10-8 GAN挑戰 10-9 深度偽造(Deepfake) 第四篇╱自然語言處理 第 11 章 自然語言處理的介紹 11-1 詞袋(BOW)與TF-IDF 11-2 詞彙前置處理 11-3 詞向量(Word2Vec) 11-4 GloVe模型 11-5 中文處理 11-6 spaCy套件 第 12 章 自然語言處理的演算法 12-1 循環神經網路(RNN) 12-2 PyTorch 內建文本資料集 12-3 長短期記憶網路(LSTM) 12-4自訂資料集 12-5 時間序列預測 12-6 Gate Recurrent Unit (GRU) 12-7 股價預測 12-8 注意力機制(Attention Mechanism) 12-9 Transformer架構 12-10 BERT 12-11 Transformers套件 12-12 總結 第 13 章 聊天機器人 (ChatBot) 13-1 ChatBot類別 13-2 ChatBot設計 13-3 ChatBot實作 13-4 ChatBot工具套件 13-5 Dialogflow實作 13-6 結語 第 14 章 語音辨識 14-1語音基本認識 14-2語音前置處理 14-3 PyTorch語音前置處理 14-4 PyTorch內建語音資料集 14-5語音深度學習應用 14-6自動語音辨識(Automatic Speech Recognition) 14-7自動語音辨識實作 14-8 結語 第五篇╱強化學習 (Reinforcement Learning) 第 15 章 強化學習 15-1 強化學習的基礎 15-2 強化學習模型 15-3 簡單的強化學習架構 15-4 Gym套件 15-5 Gym擴充功能 15-6 動態規劃(Dynamic Programming) 15-7 值循環(Value Iteration) 15-8 蒙地卡羅(Monte Carlo) 15-9 時序差分(Temporal Difference) 15-10 井字遊戲 15-11 連續型狀態變數與Deep Q-Learning演算法 15-12 Actor Critic演算法 15-13 實際應用案例 15-14 其他演算法 15-15 結論 第六篇╱圖神經網路 (GNN) 第 16 章 圖神經網路 (GNN) 16-1 圖形理論(Graph Theory) 16-2 PyTorch Geometric(PyG) 16-3 圖神經網路(GNN) 16-4 結論
未來數位科技活用大全
AI醫療革命:GPT
新AI與新人類
零基礎學會Pytho
當教會遇見AI
ChatGPT超級應
ChatGPT~IG
ChatGPT 醫療
可解釋的機器學習:用
AI繪圖夢工廠:Mi
為了保障您的權益,新絲路網路書店所購買的商品均享有到貨七天的鑑賞期(含例假日)。退回之商品必須於鑑賞期內寄回(以郵戳或收執聯為憑),且商品必須是全新狀態與完整包裝(商品、附件、內外包裝、隨貨文件、贈品等),否則恕不接受退貨。