登入
|
註冊
|
會員中心
|
結帳
|
培訓課程
魔法弟子
|
自資出版
|
電子書
|
客服中心
|
智慧型立体會員
書名
出版社
作者
isbn
編號
5050魔法眾籌
|
NG書城
|
國際級品牌課程
|
優惠通知
|
霹靂英雄音樂精選
|
iPhone 4S JB解禁秘術:Cydia 超限軟體300+
.
全格局使用PyTor
.
全格局使用PyTor
.
別再mnist了:跨
文學小說
文學
|
小說
商管創投
財經投資
|
行銷企管
人文藝坊
宗教、哲學
社會、人文、史地
藝術、美學
|
電影戲劇
勵志養生
醫療、保健
料理、生活百科
教育、心理、勵志
進修學習
電腦與網路
|
語言工具
雜誌、期刊
|
軍政、法律
參考、考試、教科用書
科學工程
科學、自然
|
工業、工程
家庭親子
家庭、親子、人際
青少年、童書
玩樂天地
旅遊、地圖
|
休閒娛樂
漫畫、插圖
|
限制級
全格局使用PyTorch - 深度學習和圖神經網路 - 實戰篇
作者:
李金洪
分類:
電腦與網路
/
綜論
出版社:
深智數位
出版日期:2022/10/20
ISBN:9786267146552
書籍編號:kk0557788
頁數:496
定價:
880
元
優惠價:
79
折
695
元
書價若有異動,以出版社實際定價為準
訂購後立即為您進貨
訂購後立即為您進貨:目前無庫存量,讀者下訂後,開始進入調書程序,一般天數約為2-10工作日(不含例假日)。
團購數最低為 20 本以上
評價數:
(請將滑鼠移至星星處進行評價)
目前平均評價:
文字連結
複製語法
全格局使用PyTorch - 深度學習和圖神經網路 - 實戰篇
圖片連結
複製語法
分
享
內容簡介
作者介紹
書籍目錄
同類推薦
熟悉基礎,精通實戰。 接續了上一本實戰篇的基礎,本書將介紹目前最流行的物體辨識和自然語言處理在圖神經網路上的最完整應用。當你熟悉了神經網路之後,接下來要精進的就是針對網路結果的強化及最佳化。在GNN的基礎上,針對目前最流行的視覺處理模型進行修改、架設及強化,並且實際應用在現有的平台上。本書的重點就是大量了使用現有的Python函數庫,並且應用了最新的資料集,讓你能真正看到資料套用在模型上的強大能力。在針對Pytorch的函數庫上,不但有視覺應用,更有號稱人工智慧明珠的NLP應用。使用了Torchtext以及NLP的唯一/最佳選擇Huggingface Transformers。而大家耳熟能詳,但又不知道怎麼用的模型,包括GPT-2、Transformer-XL、ALBERT、ELECTRA、DistillBERT等,在書中都有詳細介紹。另外為了解開DL的神祕,本書也難得介紹了Captum套件,讓深度神經網路更具可解釋性。本書最後也不忘介紹ZSL、這種極少量資料就可訓練高精度模型的方法。有關異質圖神經網路部分,也有大量DGL和NetworkX的範例,實戰篇+基礎篇兩本書,要不充分了解GNN都不行。 本書亮點 ∼GNN 最強實戰參考書∼ 使用圖型的預訓練模型、Torschvision,GaitSet模型、CASIA-B資料集 高級NLP模型訓練及微調、BERTology、CBOW、Skip-Gram、Torchtext、spaCy 文字使用模型TextCNN來把玩IMDB資料庫 高階工程師才會用的Mist啟動函數、Ranger最佳化器 正宗NLP函數庫Huggingface Transformers詳解、AutoModel、AutoModelWithMHead、多頭注意力、PretrainedTokernizer
李金洪 精通 C、Python、Java 語言,擅長神經網路、演算、協定分析、移動互聯網安全架構等技術,先後擔任過 CAD 演算工程師、架構師、專案經理、部門經理等職位。參與過深度學習領域某移動互聯網後臺的 OCR 項目,某娛樂節目機器人的語音辨識、聲紋識別專案,金融領域的若干分類專案。
第 1 章 圖片分類模型 1.1 深度神經網路起源 1.2 Inception 系列模型 1.3 ResNet 模型 1.4 DenseNet 模型 1.5 PNASNet 模型 1.6 EfficientNet 模型 1.7 實例:使用預訓練模型辨識圖片內容 1.8 實例:使用遷移學習辨識多種鳥類 1.9 從深度卷積模型中提取視覺特徵 第 2 章 機器視覺的進階應用 2.1 基於圖片內容的處理任務 2.2 實例: 使用Mask R-CNN 模型進行目標檢測與語義分割 2.3 基於視訊內容的處理任務 2.4 實例: 用GaitSet 模型分析人走路的姿態,並進行身份辨識 2.5 偵錯技巧 第 3 章 自然語言處理的相關應用 3.1 BERT 模型與NLP 任務的發展階段 3.2 NLP 中的常見任務 3.3 實例: 訓練中文詞向量 3.4 常用文字處理工具 3.5 實例: 用TextCNN 模型分析評論者是否滿意 3.6 了解Transformers 函數庫 3.7 實例: 使用Transformers 函數庫的管道方式完成多種NLP任務 3.8 Transformers 函數庫中的AutoModel 類別 3.9 Transformers 函數庫中的BERTology 系列模型 3.10 Transformers 函數庫中的詞表工具 3.11 BERTology 系列模型 3.12 實例: 用遷移學習訓練BERT 模型來對中文分類 3.13 實例: 用R-GCN 模型了解文字中的代詞 第 4 章 神經網路的可解釋性 4.1 了解模型解釋函數庫 4.2 實例: 用可解釋性了解數值分析神經網路模型 4.3 實例: 用可解釋性了解NLP 相關的神經網路模型 4.4 實例: 用Bertviz 工具視覺化BERT 模型權重 4.5 實例: 用可解釋性了解影像處理相關的神經網路模型 4.6 實例: 用可解釋性了解圖片分類相關的神經網路模型 第 5 章 辨識未知分類的方法-- 零次學習 5.1 了解零次學習 5.2 零次學習中的常見問題 5.3 帶有視覺結構約束的VSC 模型 5.4 詳解Sinkhorn 演算法 5.5 實例: 使用VSC 模型來辨識未知類別的鳥類圖片 5.6 針對零次學習的性能分析 第 6 章 異質圖神經網路 6.1 異質圖的基礎知識 6.2 二分圖的實現方式 6.3 異質圖的實現方式 6.4 隨機行走取樣 6.5 DGL 函數庫中的區塊圖結構 6.6 實例: 使用PinSAGE 模型架設推薦系統 6.7 複習
生成式 AI 入門
開源閉源LLM應用:
全民瘋 AI 系列:
AI工具使用手冊:學
AIGC大型語言模型
你的第一本智慧體AI
全面掌握Gemini
LLM原理完整回顧:
AI PC基礎CPU
人人都會AI繪圖:開
為了保障您的權益,新絲路網路書店所購買的商品均享有到貨七天的鑑賞期(含例假日)。退回之商品必須於鑑賞期內寄回(以郵戳或收執聯為憑),且商品必須是全新狀態與完整包裝(商品、附件、內外包裝、隨貨文件、贈品等),否則恕不接受退貨。